3.358 \(\int \frac {\cos (c+d x) (A+B \cos (c+d x)+C \cos ^2(c+d x))}{(a+a \cos (c+d x))^3} \, dx\)

Optimal. Leaf size=123 \[ \frac {(6 A+4 B-29 C) \sin (c+d x)}{15 d \left (a^3 \cos (c+d x)+a^3\right )}+\frac {C x}{a^3}-\frac {(A-B+C) \sin (c+d x) \cos ^2(c+d x)}{5 d (a \cos (c+d x)+a)^3}-\frac {(3 A+2 B-7 C) \sin (c+d x)}{15 a d (a \cos (c+d x)+a)^2} \]

[Out]

C*x/a^3-1/5*(A-B+C)*cos(d*x+c)^2*sin(d*x+c)/d/(a+a*cos(d*x+c))^3-1/15*(3*A+2*B-7*C)*sin(d*x+c)/a/d/(a+a*cos(d*
x+c))^2+1/15*(6*A+4*B-29*C)*sin(d*x+c)/d/(a^3+a^3*cos(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.28, antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.128, Rules used = {3041, 2968, 3019, 2735, 2648} \[ \frac {(6 A+4 B-29 C) \sin (c+d x)}{15 d \left (a^3 \cos (c+d x)+a^3\right )}+\frac {C x}{a^3}-\frac {(A-B+C) \sin (c+d x) \cos ^2(c+d x)}{5 d (a \cos (c+d x)+a)^3}-\frac {(3 A+2 B-7 C) \sin (c+d x)}{15 a d (a \cos (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a + a*Cos[c + d*x])^3,x]

[Out]

(C*x)/a^3 - ((A - B + C)*Cos[c + d*x]^2*Sin[c + d*x])/(5*d*(a + a*Cos[c + d*x])^3) - ((3*A + 2*B - 7*C)*Sin[c
+ d*x])/(15*a*d*(a + a*Cos[c + d*x])^2) + ((6*A + 4*B - 29*C)*Sin[c + d*x])/(15*d*(a^3 + a^3*Cos[c + d*x]))

Rule 2648

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> -Simp[Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3019

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_
.)*(x_)]^2), x_Symbol] :> Simp[((A*b - a*B + b*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(a*f*(2*m + 1)), x] + D
ist[1/(a^2*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[a*A*(m + 1) + m*(b*B - a*C) + b*C*(2*m + 1)*Sin[e
 + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]

Rule 3041

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((a*A - b*B + a*C)*Cos[e + f*x]*(
a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(f*(b*c - a*d)*(2*m + 1)), x] + Dist[1/(b*(b*c - a*d)*(2*m
 + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(
b*c*m + a*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c*(2*m + 1) - a*d*(m - n -
1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^
2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\cos (c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^3} \, dx &=-\frac {(A-B+C) \cos ^2(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac {\int \frac {\cos (c+d x) (a (3 A+2 B-2 C)+5 a C \cos (c+d x))}{(a+a \cos (c+d x))^2} \, dx}{5 a^2}\\ &=-\frac {(A-B+C) \cos ^2(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac {\int \frac {a (3 A+2 B-2 C) \cos (c+d x)+5 a C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2} \, dx}{5 a^2}\\ &=-\frac {(A-B+C) \cos ^2(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {(3 A+2 B-7 C) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {\int \frac {-2 a^2 (3 A+2 B-7 C)-15 a^2 C \cos (c+d x)}{a+a \cos (c+d x)} \, dx}{15 a^4}\\ &=\frac {C x}{a^3}-\frac {(A-B+C) \cos ^2(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {(3 A+2 B-7 C) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}+\frac {(6 A+4 B-29 C) \int \frac {1}{a+a \cos (c+d x)} \, dx}{15 a^2}\\ &=\frac {C x}{a^3}-\frac {(A-B+C) \cos ^2(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {(3 A+2 B-7 C) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}+\frac {(6 A+4 B-29 C) \sin (c+d x)}{15 d \left (a^3+a^3 \cos (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.76, size = 289, normalized size = 2.35 \[ \frac {\sec \left (\frac {c}{2}\right ) \sec ^5\left (\frac {1}{2} (c+d x)\right ) \left (-30 A \sin \left (c+\frac {d x}{2}\right )+30 A \sin \left (c+\frac {3 d x}{2}\right )+6 A \sin \left (2 c+\frac {5 d x}{2}\right )+30 A \sin \left (\frac {d x}{2}\right )-60 B \sin \left (c+\frac {d x}{2}\right )+40 B \sin \left (c+\frac {3 d x}{2}\right )-30 B \sin \left (2 c+\frac {3 d x}{2}\right )+14 B \sin \left (2 c+\frac {5 d x}{2}\right )+80 B \sin \left (\frac {d x}{2}\right )+270 C \sin \left (c+\frac {d x}{2}\right )-230 C \sin \left (c+\frac {3 d x}{2}\right )+90 C \sin \left (2 c+\frac {3 d x}{2}\right )-64 C \sin \left (2 c+\frac {5 d x}{2}\right )+150 C d x \cos \left (c+\frac {d x}{2}\right )+75 C d x \cos \left (c+\frac {3 d x}{2}\right )+75 C d x \cos \left (2 c+\frac {3 d x}{2}\right )+15 C d x \cos \left (2 c+\frac {5 d x}{2}\right )+15 C d x \cos \left (3 c+\frac {5 d x}{2}\right )-370 C \sin \left (\frac {d x}{2}\right )+150 C d x \cos \left (\frac {d x}{2}\right )\right )}{480 a^3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a + a*Cos[c + d*x])^3,x]

[Out]

(Sec[c/2]*Sec[(c + d*x)/2]^5*(150*C*d*x*Cos[(d*x)/2] + 150*C*d*x*Cos[c + (d*x)/2] + 75*C*d*x*Cos[c + (3*d*x)/2
] + 75*C*d*x*Cos[2*c + (3*d*x)/2] + 15*C*d*x*Cos[2*c + (5*d*x)/2] + 15*C*d*x*Cos[3*c + (5*d*x)/2] + 30*A*Sin[(
d*x)/2] + 80*B*Sin[(d*x)/2] - 370*C*Sin[(d*x)/2] - 30*A*Sin[c + (d*x)/2] - 60*B*Sin[c + (d*x)/2] + 270*C*Sin[c
 + (d*x)/2] + 30*A*Sin[c + (3*d*x)/2] + 40*B*Sin[c + (3*d*x)/2] - 230*C*Sin[c + (3*d*x)/2] - 30*B*Sin[2*c + (3
*d*x)/2] + 90*C*Sin[2*c + (3*d*x)/2] + 6*A*Sin[2*c + (5*d*x)/2] + 14*B*Sin[2*c + (5*d*x)/2] - 64*C*Sin[2*c + (
5*d*x)/2]))/(480*a^3*d)

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 146, normalized size = 1.19 \[ \frac {15 \, C d x \cos \left (d x + c\right )^{3} + 45 \, C d x \cos \left (d x + c\right )^{2} + 45 \, C d x \cos \left (d x + c\right ) + 15 \, C d x + {\left ({\left (3 \, A + 7 \, B - 32 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (3 \, A + 2 \, B - 17 \, C\right )} \cos \left (d x + c\right ) + 3 \, A + 2 \, B - 22 \, C\right )} \sin \left (d x + c\right )}{15 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

1/15*(15*C*d*x*cos(d*x + c)^3 + 45*C*d*x*cos(d*x + c)^2 + 45*C*d*x*cos(d*x + c) + 15*C*d*x + ((3*A + 7*B - 32*
C)*cos(d*x + c)^2 + 3*(3*A + 2*B - 17*C)*cos(d*x + c) + 3*A + 2*B - 22*C)*sin(d*x + c))/(a^3*d*cos(d*x + c)^3
+ 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

________________________________________________________________________________________

giac [A]  time = 0.66, size = 153, normalized size = 1.24 \[ \frac {\frac {60 \, {\left (d x + c\right )} C}{a^{3}} - \frac {3 \, A a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, B a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 3 \, C a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 10 \, B a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 20 \, C a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 15 \, A a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 15 \, B a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 105 \, C a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{15}}}{60 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^3,x, algorithm="giac")

[Out]

1/60*(60*(d*x + c)*C/a^3 - (3*A*a^12*tan(1/2*d*x + 1/2*c)^5 - 3*B*a^12*tan(1/2*d*x + 1/2*c)^5 + 3*C*a^12*tan(1
/2*d*x + 1/2*c)^5 + 10*B*a^12*tan(1/2*d*x + 1/2*c)^3 - 20*C*a^12*tan(1/2*d*x + 1/2*c)^3 - 15*A*a^12*tan(1/2*d*
x + 1/2*c) - 15*B*a^12*tan(1/2*d*x + 1/2*c) + 105*C*a^12*tan(1/2*d*x + 1/2*c))/a^15)/d

________________________________________________________________________________________

maple [A]  time = 0.12, size = 175, normalized size = 1.42 \[ -\frac {A \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{20 d \,a^{3}}+\frac {B \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{20 d \,a^{3}}-\frac {C \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{20 d \,a^{3}}-\frac {B \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d \,a^{3}}+\frac {C \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d \,a^{3}}+\frac {A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d \,a^{3}}+\frac {B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d \,a^{3}}-\frac {7 C \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d \,a^{3}}+\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) C}{d \,a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^3,x)

[Out]

-1/20/d/a^3*A*tan(1/2*d*x+1/2*c)^5+1/20/d/a^3*B*tan(1/2*d*x+1/2*c)^5-1/20/d/a^3*C*tan(1/2*d*x+1/2*c)^5-1/6/d/a
^3*B*tan(1/2*d*x+1/2*c)^3+1/3/d/a^3*C*tan(1/2*d*x+1/2*c)^3+1/4/d/a^3*A*tan(1/2*d*x+1/2*c)+1/4/d/a^3*B*tan(1/2*
d*x+1/2*c)-7/4/d/a^3*C*tan(1/2*d*x+1/2*c)+2/d/a^3*arctan(tan(1/2*d*x+1/2*c))*C

________________________________________________________________________________________

maxima [A]  time = 0.44, size = 205, normalized size = 1.67 \[ -\frac {C {\left (\frac {\frac {105 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {20 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}}{a^{3}} - \frac {120 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{3}}\right )} - \frac {B {\left (\frac {15 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {10 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}} - \frac {3 \, A {\left (\frac {5 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {\sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}}}{60 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/60*(C*((105*sin(d*x + c)/(cos(d*x + c) + 1) - 20*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c)^5/(co
s(d*x + c) + 1)^5)/a^3 - 120*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a^3) - B*(15*sin(d*x + c)/(cos(d*x + c) +
 1) - 10*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/a^3 - 3*A*(5*sin(d*x + c
)/(cos(d*x + c) + 1) - sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/a^3)/d

________________________________________________________________________________________

mupad [B]  time = 1.40, size = 160, normalized size = 1.30 \[ \frac {C\,x}{a^3}-\frac {{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (\frac {B\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{6}-\frac {C\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{3}\right )-{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (\frac {A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4}+\frac {B\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4}-\frac {7\,C\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4}\right )+\frac {A\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{20}-\frac {B\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{20}+\frac {C\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{20}}{a^3\,d\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + a*cos(c + d*x))^3,x)

[Out]

(C*x)/a^3 - (cos(c/2 + (d*x)/2)^2*((B*sin(c/2 + (d*x)/2)^3)/6 - (C*sin(c/2 + (d*x)/2)^3)/3) - cos(c/2 + (d*x)/
2)^4*((A*sin(c/2 + (d*x)/2))/4 + (B*sin(c/2 + (d*x)/2))/4 - (7*C*sin(c/2 + (d*x)/2))/4) + (A*sin(c/2 + (d*x)/2
)^5)/20 - (B*sin(c/2 + (d*x)/2)^5)/20 + (C*sin(c/2 + (d*x)/2)^5)/20)/(a^3*d*cos(c/2 + (d*x)/2)^5)

________________________________________________________________________________________

sympy [A]  time = 9.73, size = 192, normalized size = 1.56 \[ \begin {cases} - \frac {A \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{20 a^{3} d} + \frac {A \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{4 a^{3} d} + \frac {B \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{20 a^{3} d} - \frac {B \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{6 a^{3} d} + \frac {B \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{4 a^{3} d} + \frac {C x}{a^{3}} - \frac {C \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{20 a^{3} d} + \frac {C \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{3 a^{3} d} - \frac {7 C \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{4 a^{3} d} & \text {for}\: d \neq 0 \\\frac {x \left (A + B \cos {\relax (c )} + C \cos ^{2}{\relax (c )}\right ) \cos {\relax (c )}}{\left (a \cos {\relax (c )} + a\right )^{3}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**3,x)

[Out]

Piecewise((-A*tan(c/2 + d*x/2)**5/(20*a**3*d) + A*tan(c/2 + d*x/2)/(4*a**3*d) + B*tan(c/2 + d*x/2)**5/(20*a**3
*d) - B*tan(c/2 + d*x/2)**3/(6*a**3*d) + B*tan(c/2 + d*x/2)/(4*a**3*d) + C*x/a**3 - C*tan(c/2 + d*x/2)**5/(20*
a**3*d) + C*tan(c/2 + d*x/2)**3/(3*a**3*d) - 7*C*tan(c/2 + d*x/2)/(4*a**3*d), Ne(d, 0)), (x*(A + B*cos(c) + C*
cos(c)**2)*cos(c)/(a*cos(c) + a)**3, True))

________________________________________________________________________________________